

LBNF/DUNE and the Hunt for Leptonic CP Violation

Mary Bishai for the DUNI Collaboration

Introduction
CP in ν SM
CPV and other

Current Experimenta Landscape T2K

Future Experimenta Landscape

Conclusion

LBNF/DUNE and the Hunt for Leptonic CP Violation

FPCP 2016, 6-9 June 2016, Caltech

Mary Bishai for the DUNE Collaboration

June 1, 2016

Outline

LBNF/DUNE and the Hunt for Leptonic CP Violation

Mary Bisha for the DUN Collaboratio

CP in ν SM
CPV and othe
New Physics

Current Experimenta Landscape T2K

Future Experimenta Landscape DUNE

- 1 Introduction
 - \blacksquare CP in ν SM
 - CPV and other New Physics
- 2 Current Experimental Landscape
 - T2K
 - \blacksquare NO ν A
- 3 Future Experimental Landscape
 - DUNE
- 4 Conclusion

Oscillations in the 3-flavor u SM

LBNF/DUNE and the Hunt for Leptonic CP Violation

Mary Bishai for the DUNI Collaboration

CP in ν SM CPV and other New Physics

Current Experiment Landscape T2K NOvA

Future Experimenta Landscape DUNE

onclusion

In the ν 3-flavor model matter/anti-matter asymmetries in neutrinos are best probed using $\nu_{\mu}/\bar{\nu}_{\mu} \to \nu_{e}/\bar{\nu}_{e}$ oscillations (or vice versa). With terms up to second order in $\alpha \equiv \Delta m_{21}^{2}/\Delta m_{31}^{2}$ and $\sin^{2}\theta_{13}$, (M. Freund. Phys. Rev. D 64, 053003):

terms up to second order in
$$\alpha \equiv \Delta m_{21}^2/\Delta m_{31}^2$$
 and $\sin^2\theta_{13}$, (M. Freund. Phys. Rev. D 64, 053003):
$$P(\nu_{\mu} \rightarrow \nu_{e}) \cong P(\nu_{e} \rightarrow \nu_{\mu}) \cong \underbrace{P_{0}}_{\theta_{13}} + \underbrace{P_{\sin\delta}}_{\text{violating}} + P_{\cos\delta} + \underbrace{P_{3}}_{\text{solar oscillation}}$$

where for oscillations in vacuum:

$$P_0 = \sin^2 heta_{23} \sin^2 2 heta_{13} \sin^2(\Delta),$$
 $P_3 = lpha^2 \cos^2 heta_{23} \sin^2 2 heta_{12} \sin^2(\Delta),$
 $P_{\sin \delta} = lpha \, 8J_{cp} \sin^3(\Delta),$
 $P_{\cos \delta} = lpha \, 8J_{cp} \cot \delta_{\mathrm{CP}} \cos \Delta \sin^2(\Delta),$
and where
 $\Delta = \Delta m_{31}^2 L/4E$

Oscillations in the 3-flavor u SM

LBNF/DUNE and the Hunt for Leptonic CP Violation

Mary Bishai for the DUN Collaboration

CP in ν SM CPV and other New Physics

Current Experimenta Landscape T2K NOvA

Future Experimenta Landscape DUNE

onclusion

In the ν 3-flavor model matter/anti-matter asymmetries in neutrinos are best probed using $\nu_{\mu}/\bar{\nu}_{\mu} \to \nu_{e}/\bar{\nu}_{e}$ oscillations (or vice versa). With terms up to second order in $\alpha \equiv \Delta m_{21}^{2}/\Delta m_{31}^{2}$ and $\sin^{2}\theta_{13}$, (M. Freund. Phys. Rev. D 64, 053003):

$$P(
u_{\mu}
ightarrow
u_{e}) \cong P(
u_{e}
ightarrow
u_{\mu}) \cong \underbrace{P_{0}}_{ heta_{13}} + \underbrace{P_{\sin \delta}}_{ ext{CP violating}} + P_{\cos \delta} + \underbrace{P_{3}}_{ ext{solar oscillation}}$$

where for oscillations in matter with constant density:

$$P_0 = \sin^2 \theta_{23} \frac{\sin^2 2\theta_{13}}{(A-1)^2} \sin^2[(A-1)\Delta],$$

$$P_3 = \alpha^2 \cos^2 \theta_{23} \frac{\sin^2 2\theta_{12}}{A^2} \sin^2(A\Delta),$$

$$P_{\sin \delta} = \alpha \frac{8J_{cp}}{A(1-A)} \sin \Delta \sin(A\Delta) \sin[(1-A)\Delta],$$

$$P_{\cos \delta} = \alpha \frac{8J_{cp} \cot \delta_{CP}}{A(1-A)} \cos \Delta \sin(A\Delta) \sin[(1-A)\Delta],$$
and where

 $\Delta = \Delta m_{31}^2 L/4E \text{ and } A = \sqrt{3} G_F N_e 2E/\Delta m_{31}^2.$ For $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$, $P_{\sin\delta} \rightarrow -P_{\sin\delta}$

3 Flavor Oscillations with CPV and Matter Effects

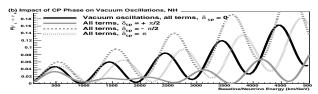
LBNF/DUNE and the Hunt for Leptonic CP Violation

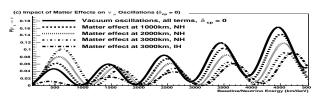
Mary Bisha for the DUN

Introduction

CP in ν SM


CPV and othe


New Physics


Current Experimenta Landscape

Future Experimenta Landscape

Conclusio

$P(u_{\mu} ightarrow u_{e})$ vs L and E $(\delta_{cp} = \overline{f 0})$

LBNF/DUNE and the Hunt for Leptonic CP Violation

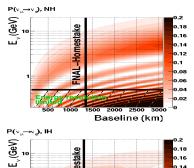
Mary Bisha for the DUN Collaboratio

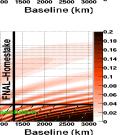
Introduction

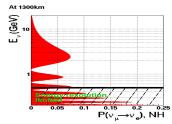
CP in ν SM

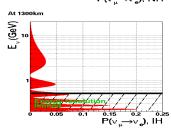
CPV and othe

New Physics


Current Experimenta Landscape T2K


Future Experimenta Landscape DUNE


Conclusion


The $u_{\mu} ightarrow u_{e}$ oscillation probability maxima occur at

$$\frac{L~(\mathrm{km})}{E_n(\mathrm{GeV})} = \left(\frac{\pi}{2}\right) \frac{(2n-1)}{1.27 \times \Delta m_{31}^2 (\mathrm{eV}^2)} \approx (2n-1) \times \frac{515~\mathrm{km}}{\mathrm{GeV}}$$

CP Violation in ν SM

LBNF/DUNE and the Hunt for Leptonic CP Violation

for the DUN Collaboration

Introduction

CP in ν SM

CPV and other

New Physics

Current Experimenta Landscape T2K

Future Experimenta Landscape DUNE

Conclusion

The charge-parity (CP) asymmetry is defined as

$$\mathcal{A}_{cp} = rac{P(
u_{\mu}
ightarrow
u_{e}) - P(ar{
u}_{\mu}
ightarrow ar{
u}_{e})}{P(
u_{\mu}
ightarrow
u_{e}) + P(ar{
u}_{\mu}
ightarrow ar{
u}_{e})}$$

$$\mathcal{A}_{cp} \sim rac{\cos heta_{23}\sin2 heta_{12} ext{sin}\,\delta}{\sin heta_{23}\sin heta_{13}}\left(rac{\Delta m_{21}^2L}{4 extit{E}_
u}
ight) + ext{matter effects}$$

W. Marciano, Z. Parsa, Nucl.Phys.Proc.Suppl. 221 (2011)

The CP phase δ_{cp} is unknown. CP is violated when $\delta_{cp} \neq 0, \pi$

The 4 most important things to know about ν CPV

- $\mathcal{A}_{cp} \propto 1/\sin\theta_{13} \Rightarrow$ Large θ_{13} makes CPV searches HARDER.
- $A_{cp} \propto 1/\tan\theta_{23} \Rightarrow \text{Large sin}(\theta_{23}) = \text{smaller CPV (octant!)}$
- lacksquare $\mathcal{A}_{\it cp} \propto 1/\it E_{
 u} \Rightarrow$ CP asymmetries are larger at lower energies
- $\mathcal{A}_{cp} \propto L \Rightarrow$ CP asymmetries are larger at longer baselines

CP Asymmetry vs $E_{ u}$ and δ_{cp}

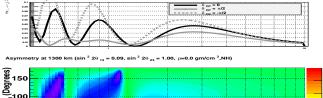
LBNF/DUNE and the Hunt for Leptonic CP Violation

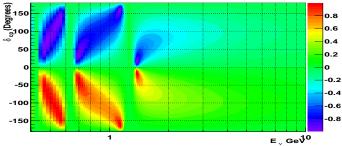
Mary Bisha for the DUN Collaboratio

Introduction

CP in ν SM

CPV and other


New Physics


Current Experimenta Landscape T2K

Future Experimenta Landscape

Conclusion

Asymmetries are larger near minima BUT, events appear at the maxima!

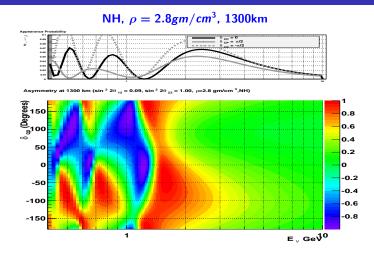
CP Asymmetry vs $E_{ u}$ and δ_{cp}

LBNF/DUNE and the Hunt for Leptonic CP Violation

Mary Bisha for the DUN Collaboratio

Introduction

CP in ν SM


CPV and othe

New Physics

Current Experimenta Landscape T2K

Future Experimenta Landscape

Conclusion

Asymmetries are larger near minima BUT, events appear at the maxima!

CP Asymmetry vs $E_ u$ and δ_{cp}

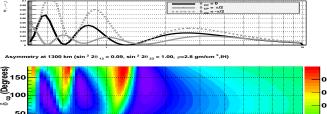
LBNF/DUNE and the Hunt for Leptonic CP Violation

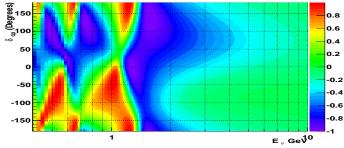
Mary Bisha for the DUN Collaboration

Introduction

CP in ν SM

CPV and other


New Physics


Current Experimenta Landscape T2K

Future Experimenta Landscape

Conclusion

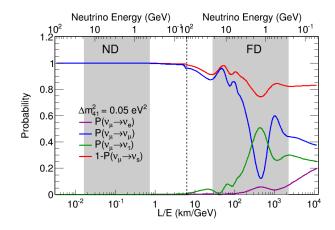
Asymmetries are larger near minima BUT, events appear at the maxima!

Impact of Sterile Neutrinos on u Oscillations

LBNF/DUNE and the Hunt for Leptonic CP Violation

Mary Bisha for the DUN Collaboratio

Introduction


CP in ν SM

CPV and other

New Physics

Current Experimenta Landscape T2K

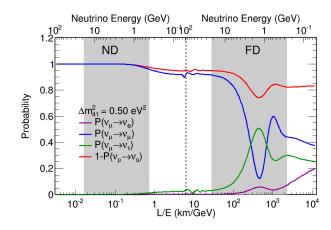
Future Experimenta Landscape

Impact of Sterile Neutrinos on u Oscillations

LBNF/DUNE and the Hunt for Leptonic CP Violation

Mary Bishai for the DUN Collaboration

Introduction


CP in ν SM

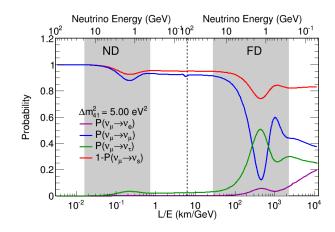
CPV and other

New Physics

Current Experimenta Landscape T2K

Future Experimenta Landscape

Impact of Sterile Neutrinos on u Oscillations


LBNF/DUNE and the Hunt for Leptonic CP Violation

Mary Bisha for the DUN Collaboratio

Introduction CP in ν SM CPV and other New Physics

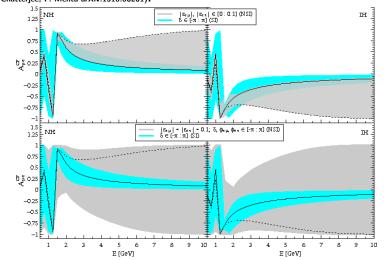
Current Experimenta Landscape T2K

Future Experimenta Landscape

LBNF/DUNE and the Hunt for Leptonic CP Violation

Mary Bisha for the DUN Collaboration

Introduction CP in ν SM CPV and other New Physics


Current Experimenta Landscape T2K

Future Experimenta Landscape DUNF

Conclusion

NSI could also impact CPV interpretation in long-baseline(M. Masud, A.

Chatterjee, P. Mehta arXiv:1510.08261):

LBNF/DUNE and the Hunt for Leptonic CP Violation

Mary Bisha for the DUN Collaboratio

Introduction CP in ν SM CPV and othe New Physics

Current Experimental Landscape

T2K ΝΟ*ν*Α

Future Experimenta Landscape

Conclusior

Results from Current $u_{\mu} \rightarrow u_{e}$ Long-Baseline Experiments and Near Future

$\nu_{\mu} \rightarrow \nu_{e}$ Event Rates - Various Experiments.

LBNF/DUNE and the Hunt for Leptonic CP Violation

Current Experimental Landscape

arXiv:1307.7335, for 50 kton.vears* of exposure. No detector effects

	Beams		
Baseline	$\nu_{\mu} ightarrow \nu_{\mu}$	$\nu_{\mu} ightarrow u_{ au}$	$ u_{\mu} ightarrow u_{e}$
295km (off-axis)			
	900	< 1	40 - 70
735km			
	11,000	115	230-340
810km (off-axis)			
	1500	10	120 - 200
1,300km			
	4300	160	350 - 600
1,300km			
	12,000	690	290 - 430
	295km (off-axis) 735km 810km (off-axis) 1,300km	295km (off-axis) 900 735km 11,000 810km (off-axis) 1500 1,300km 4300 1,300km	295km (off-axis) 900 < 1 735km 11,000 115 810km (off-axis) 1500 10 1,300km 4300 160 1,300km

Facility duty factor taken into consideration

Even with maximal CP, event rate is a $\leq 10 \ \nu_{\mu} \rightarrow \nu_{e}$ per kT.MW.yr

Experimental challenge for CPV measurements: STATISTICS!

²⁰¹⁴ CDR Reference Design with NuMI style focusing

The T2K Experiment (295km baseline)

LBNF/DUNE and the Hunt for Leptonic CP Violation

Mary Bishai for the DUN

Introduction CP in ν SM CPV and oth

Current Experimenta

T2K

Future Experiment Landscape

Conclusio

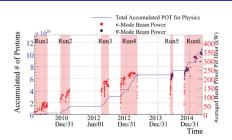
T2K Results

LBNF/DUNE and the Hunt for Leptonic CP Violation

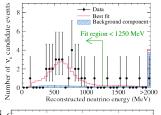
for the DUNI Collaboration

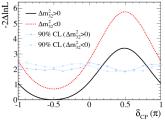
Introduction

CP in ν SM


CPV and other

New Physics


Current Experimental Landscape T2K


Future Experimenta Landscape

onclusion

With 6.57 \times 10^{20} POT in ν mode Observe 28 ν_e with 4.9 \pm 0.6 background With 4.04 \times 10^{20} POT in $\bar{\nu}$ mode Observe 3 ν_e candidates. Expect 1.51 to 1.77 background.

Favors maximal CP at NH

The NOvA Experiment (810km Baseline)

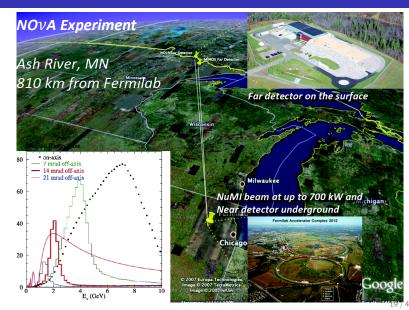
LBNF/DUNE and the Hunt for Leptonic CP Violation

Mary Bisha for the DUN Collaboratio

Introduction

CP in ν SM

CPV and othen

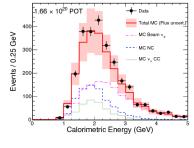

New Physics

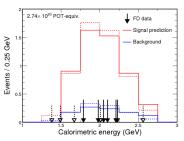
Current Experimenta Landscape

NOZA

Future Experimenta Landscape

Conclusio


First Results from $NO\nu A$


LBNF/DUNE and the Hunt for Leptonic **CP** Violation

NOZA

arXiv:1601.05022

With 2.74×10^{20} protons-on-target:

6 LID candidates

(3.3 σ signal of ν_e appearance)

11 LEM candidates

(5.5 σ signal of ν_e appearance)

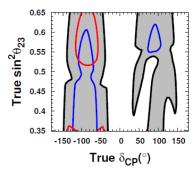
LID analysis disfavors $0.1\pi < \delta_{\mathrm{CP}} < 0.5\pi$ in the IH at 90% C.L. $_{20/40}$

T2K+NO ν A Prospects

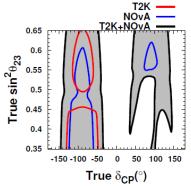
LBNF/DUNE and the Hunt for Leptonic CP Violation

Mary Bisha for the DUN Collaboratio

Introduction CP in ν SM CPV and other New Physics


Current Experimenta Landscape T2K

Future Experimenta Landscape


ΝΟνΑ

onclusion

T2K (7.8 \times 10²¹ pot) and NO ν A (1.8 \times 10²¹ pot) combined, exclusion of $\delta_{cp}=0$ at 90% C.L. (K. Abe et. al. arXiv:1409.7469):

(b) 1:1 T2K, 1:1 NOνA ν:ν̄, NH

Future Experimental Landscape: LBNF/DUNE

LBNF/DUNE and the Hunt for Leptonic CP Violation

Mary Bisha for the DUN Collaboration

Introduction CP in ν SM CPV and other New Physics

Current Experimenta Landscape T2K NOvA

Future Experimental Landscape DUNE

- Long baseline experiment with a wide-band beam and a 1300km baseline from Fermilab to the Sanford Underground Research Facility in Lead, SD.
- Highly capable mult-purpose Near Detector at Fermilab
- 40 kton fiducial (80 kton total) Liquid Argon Time Projection Chambers (LArTPC) at SURF. Both single and dual-phase LArTPC options under consideration.

The DUNE Collaboration

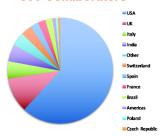
LBNF/DUNE and the Hunt for Leptonic CP Violation

Mary Bisha for the DUN Collaboratio

Introduction
CP in ν SM
CPV and othe
New Physics

Current Experimenta Landscape

T2K ΝΟ*ν*Α


Experimenta Landscape DUNF

Conclusior

Formed in Jan 2015 from combination of the US-based LBNE and LBNO experiments.

856 Collaborators

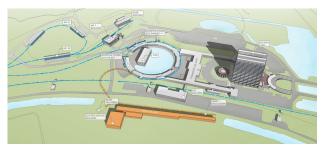
from 149 Institutions in 29 Nations

Armenia, Belgium, Brazil, Bulgaria, Canada, Colombia, Czech Republic, Finland, France, Greece, India, Iran, Italy, Japan, Madagascar, Mexico, Netherlands, Peru, Poland, Romania, Russia, Spain, Sweden, Switzerland, Turkey, UK, USA, Ukraine

Fermilab Accelerator upgrades for DUNE

LBNF/DUNE and the Hunt for Leptonic CP Violation

Mary Bisha for the DUN Collaboration


Introduction CP in ν SM CPV and other New Physics

Current Experimenta Landscape T2K

Future Experimenta Landscape DUNE

onclusion

Planned upgrades to the Fermilab complex to increase proton intensity:

PIP-II replaces upstream portion of linac feeding into 8 GeV Booster: 1.03 MW at 60 GeV

1.07 MW at 80 GeV 1.20 MW at 120 GeV

Ready by 2025

Further upgrades (PIP-III) would replace booster with Rapid Cycling Synchrotron (RCS) or SC Linac. Currently in R&D stage.

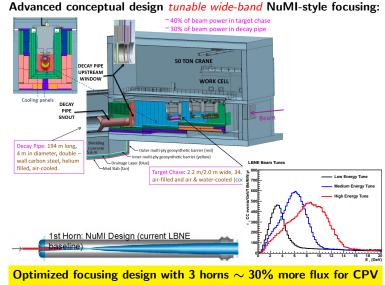
 \geq 2.0 MW at 60 GeV > 2.3 MW at 120 GeV

The LBNF Beamline for DUNE

LBNF/DUNE and the Hunt for Leptonic CP Violation

Mary Bisha for the DUN

Introduction


CP in ν SM

CPV and other

New Physics

Current Experimenta Landscape

Future Experimenta Landscape DUNE

The DUNE Near Detector Reference Design

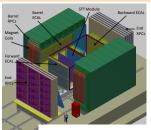
LBNF/DUNE and the Hunt for Leptonic CP Violation

Mary Bishai for the DUNI

Introduction

CP in ν SM

CPV and othe


New Physics

Current Experimenta Landscape

Future Experiment Landscape

Conclusion

Reference design is the Fine Grained Tracker based on the "LBNE-India Detailed Project Report (DPR)" submitted to DAE, India in 2012. Alternative/additional designs under consideration by DUNE

Performance Metric	Value
Vertex resolution	0.1 mm
Angular resolution	2 mrad
E_e resolution	5%
E_{μ} resolution	5%
$\nu_{\mu}/\overline{\nu}_{\mu}$ ID	Yes
$\nu_e/\overline{\nu}_e$ ID	Yes
$NC\pi^0/CCe$ rejection	0.1%
NCγ/CCe rejection	0.2%
NCμ/CCe rejection	0.01%

Parameter	Value
STT detector volume	$3 \times 3 \times 7.04 \text{ m}^3$
STT detector mass	8 tons
Number of straws in STT	123,904
Inner magnetic volume	$4.5 \times 4.5 \times 8.0 \text{ m}^3$
Targets	1.27-cm thick argon ($\sim 50\mathrm{kg}$), water and others
Transition radiation radiators	2.5 cm thick
ECAL X_0	10 barrel, 10 backward, 18 forward
Number of scintillator bars in ECAL	32,320
Dipole magnet	2.4-MW power; 60-cm steel thickness
Magnetic field and uniformity	0.4 T; < 2% variation over inner volume
MuID configuration	32 RPC planes interspersed between 20-cm thick layers of steel

Measuring the u Flux with the DUNE ND

LBNF/DUNE and the Hunt for Leptonic CP Violation

for the DUN Collaboratio

CP in ν SM
CPV and other

Current Experimenta Landscape T2K NOvA

Future Experimenta Landscape

Technique	Flavor	Absolute	Relative	Near Detector
Technique	Flavor	normalization	flux $\Phi(E_{\nu})$	requirements
NC Scattering	ν_{μ}	2.5%	~ 5%	e ID
$\nu_{\mu}e^{-} \rightarrow \nu_{\mu}e^{-}$	ν_{μ}	2.5 %		θ_e Resolution
νμο ννμο				e^-/e^+ Separation
Inverse muon	ν_{μ}	3%		μ ID
decay				θ_{μ} Resolution
$\nu_{\mu}e^{-} \rightarrow \mu^{-}\nu_{e}$				2-Track (μ+X) Resolution
				μ energy scale
CC QE	ν_{μ}	3 - 5%	5 - 10%	D target
$\nu_{\mu}n \rightarrow \mu^{-}p$				p Angular resolution
$Q^2 \rightarrow 0$				p energy resolution
				Back-Subtraction
CC QE	$\overline{ u}_{\mu}$	5%	10%	H target
$\overline{\nu}_{\mu}p \rightarrow \mu^{+}n$ $O^{2} \rightarrow 0$				Back-Subtraction
Q → 0				
Low- ν_0	ν_{μ}		2.0%	μ^- vs μ^+
				E_{μ} -Scale
				Low- E_{Had} Resolution
Low- ν_0	$\overline{\nu}_{\mu}$		2.0%	μ^- vs μ^+
				E_{μ} -Scale
				Low- E_{Had} Resolution
Low- ν_0	$\nu_e l \overline{\nu}_e$	1-3%	2.0%	e^{-}/e^{+} Separation (K_{L}^{0})
CC	$ u_e l u_\mu$	<1%	$\sim \! 2\%$	e^- ID & μ^- ID
				p_e/p_μ Resolution
CC	$\overline{\nu}_e / \overline{\nu}_\mu$	<1%	~2%	e^+ ID & μ^+ ID
				p_e/p_μ Resolution
Low-v₀/CohPi	$\overline{ u}_{\mu}/ u_{\mu}$	\sim 2%	~2%	μ^+ ID & μ^- ID
				p_{μ} Resolution
				E_{Had} Resolution

Near to Far Extrapolation

LBNF/DUNE and the Hunt for Leptonic CP Violation

Mary Bishai for the DUNE Collaboration

Introduction

CP in ν SM

CPV and other

New Physics

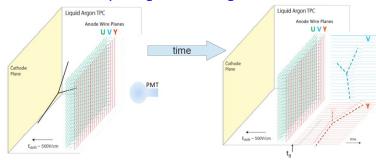
Current Experimental Landscape T2K

Future Experimental Landscape

The DUNE Far Detector LArTPC

LBNF/DUNE and the Hunt for Leptonic CP Violation

Mary Bishai for the DUN Collaboration


Introduction CP in ν SM CPV and other

Current Experimenta Landscape T2K

Future Experimenta Landscape

onclusion

Liquid Argon TPCs: Single Phase

The DUNE Far Detector LArTPC

LBNF/DUNE and the Hunt for Leptonic CP Violation

Mary Bisha for the DUN Collaboratio

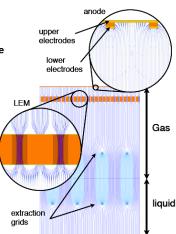
Introduction CP in ν SM CPV and othe New Physics

Current Experimenta Landscape T2K

Future Experimenta Landscape

Conclusion

Liquid Argon TPCs: Dual Phase


 Charge collection on a 2D anode readout (symmetric unipolar signals with two orthogonal views)

3.) Charge multiplication in the holes of the Large Electron Multiplier (LEM)

2.) Drift electrons are efficiently emitted into the gas phase

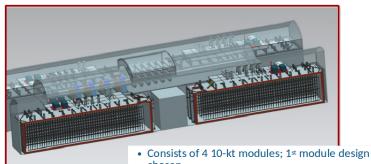
1.) Ionization electrons drift towards the liquid argon surface

The DUNE Far Detector LArTPC

LBNF/DUNE and the Hunt for Leptonic CP Violation

Mary Bishai for the DUNI Collaboration

Introduction


CP in ν SM

CPV and othe

New Physics

Current Experimenta Landscape T2K

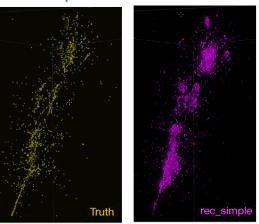
Future Experimenta Landscape

- chosen
- One 10-kt module:
 - Active volume 12m x 14.5m x 58m
 - 150 total APAs; 384,000 sense wires
- Each APA: 2.3m x 6m; 2560 sense wires
- 3 sense wire planes; wire pitch: ~5 mm
- Drift field: 500 V/cm
- Maximum drift distance: 3.6 m (~2 ms)

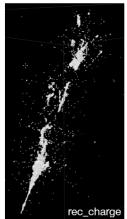
Simulation/Reconstruction in a Single Phase LArTPC (http://www.phy.bnl.gov/wire-cell)

LBNF/DUNE and the Hunt for Leptonic CP Violation

Mary Bisha for the DUN Collaboratio


Introduction CP in ν SM CPV and other New Physics

Current Experimenta Landscape T2K


Future Experimenta Landscape

Example: a 1.5 GeV electron

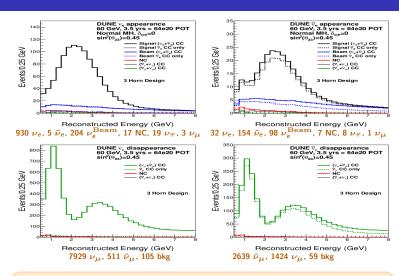
Use only geometry information

Use geometry and charge information

DUNE Event Spectra Exposure: 150 kT.MW.yr (equal $\nu/\bar{\nu}$) 1MW.yr = 1 × 10²¹

p.o.t at 120 GeV. ($\sin^2 2\theta_{13} = 0.085$, $\sin^2 \theta_{23} = 0.45$, $\delta m_{31}^2 = 2.46 \times 10^{-3} \text{ eV}^2$)

LBNF/DUNE and the Hunt for Leptonic CP Violation


Mary Bishai for the DUNI Collaboration

Introduction CP in ν SM CPV and othe New Physics

Current Experimental Landscape T2K

Future Experimenta Landscape DUNE

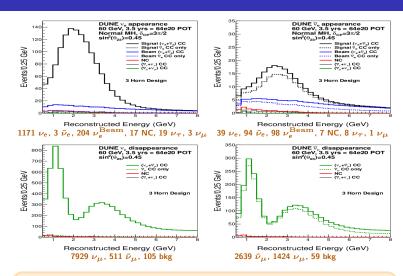
onclusion

Simultaneous fit to all four samples to determine osc. params

DUNE Event Spectra Exposure: 150 kT.MW.yr (equal $\nu/\bar{\nu}$) 1MW.yr = 1 × 10²¹

p.o.t at 120 GeV. ($\sin^2 2\theta_{13} = 0.085$, $\sin^2 \theta_{23} = 0.45$, $\delta m_{31}^2 = 2.46 \times 10^{-3} \text{ eV}^2$)

LBNF/DUNE and the Hunt for Leptonic CP Violation


Mary Bishai for the DUN Collaboration

Introduction CP in ν SM CPV and othe New Physics

Current Experimental Landscape T2K NOvA

Future Experimenta Landscape DUNE

onclusion

Simultaneous fit to all four samples to determine osc. params

DUNE CP Sensitivity

LBNF/DUNE and the Hunt for Leptonic CP Violation

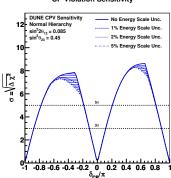
Mary Bisha for the DUN

Introduction

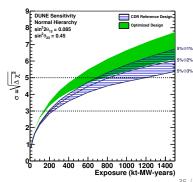
CP in ν SM

CPV and othen

New Physics


Current Experimenta Landscape T2K

Future Experimenta Landscape


onclusion

Source of Uncertainty	MINOS v _e	T2K v _e	Goal for DUNE v _e
Beam Flux	0.3%	3.2%	2%
Interaction Model	2.7%	5.3%	~2%
Energy Scale (V _µ)	3.5%	Included above	Included in 5% ν_{μ} uncertainty
Energy Scale (v _e)	2.7%	2.5% includes all FD effects	2%
Fiducial Volume	2.4%	1%	1%
Total Uncertainty	5.7%	6.8%	3.6%
Used in DUNE sensitiv	vity calculations:		5% ⊕ 2%

CP Violation Sensitivity

50% CP Violation Sensitivity

DUNE Physics Milestones (NH)

LBNF/DUNE and the Hunt for Leptonic CP Violation

Mary Bisha for the DUN Collaboratio

Introduction CP in ν SM CPV and othe New Physics

Current Experimenta Landscape T2K

Future Experimenta Landscape DUNE

Conclusion

Physics milestone	Exposure kt · MW · year (reference beam)	Exposure kt · MW · year (optimized beam)
1° θ_{23} resolution $(\theta_{23}=42^{\circ})$	70	45
CPV at 3σ ($\delta_{\rm CP}=+\pi/2$)	70	60
CPV at 3σ ($\delta_{\mathrm{CP}} = -\pi/2$)	160	100
CPV at 5σ ($\delta_{\rm CP}=+\pi/2$)	280	210
MH at 5σ (worst point)	400	230
10° resolution ($\delta_{\mathrm{CP}}=0$)	450	290
CPV at 5σ ($\delta_{\rm CP} = -\pi/2$)	525	320
CPV at 5σ 50% of δ_{CP}	810	550
Reactor θ_{13} resolution	1200	850
$(\sin^2 2\theta_{13} = 0.084 \pm 0.003)$		
CPV at 3σ 75% of δ_{CP}	1320	850

Even if CP is maximally violated \rightarrow several years to 5σ discovery

CP Phase Resolution vs Exposure

LBNF/DUNE and the Hunt for Leptonic CP Violation

Mary Bishai for the DUN Collaboration

Introduction CP in ν SM CPV and othe New Physics

Current Experiment: Landscape T2K NOvA

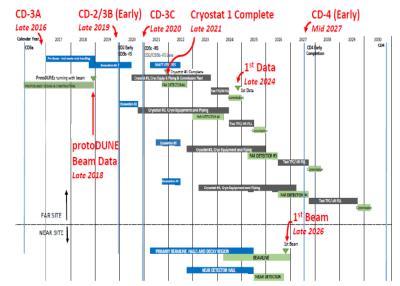
Future Experimenta Landscape DUNE

LBNF/DUNE Schedule

LBNF/DUNE and the Hunt for Leptonic CP Violation

Mary Bishai for the DUN Collaboration

Introduction


CP in ν SM

CPV and other

New Physics

Current Experimenta Landscape T2K

Future Experimenta Landscape

Summary and Conclusions

LBNF/DUNE and the Hunt for Leptonic CP Violation

Mary Bishai for the DUNI Collaboration

Introduction CP in ν SM CPV and other New Physics

Experimenta Landscape T2K NOvA

Future Experimenta Landscape DUNE

- Neutrino CP violation is best measured by studying $\nu_{\mu} \rightarrow \nu_{e}$ and $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$ oscillations over long-baselines.
- Experiments need to separate CP asymmetries from asymmetries induced by the expected MSW effect as well as new physics effects such as sterile neutrinos (if they exist) and NSI.
- The current generation of experiments after a decade of running could rule out $\delta_{\rm CP}=0$ at 90% C.L. over a large fraction of $\delta_{\rm CP}-\theta_{23}$ space. Combined results from running NO ν A and T2K at maximum power could produce evidence for CPV at 3σ if it is maximal.
- BUT Only future more capable LB expts can establish CPV in ν and disentangle from other effects.

LBNF/DUNE and the Hunt for Leptonic CP Violation

Mary Bisha for the DUN

Introduction CP in ν SM CPV and oth New Physics

Current Experimenta Landscape T2K

Future Experimental Landscape DUNE

